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Abstract. We study the problem of transport in linear random resistor-superconductor 
mixtures with a random distribution of resistor strength. The superconductors with a 
concentration p are represented in our model as short circuits. The resistor concentration 
is ( 1  - p )  and their conductivity distribution is p( a) - a-", a < 1. We find that for a > 0 
the specific conductivity scales with the linear size L of the system as L-"'('-")(l - 
p) - ' / ( ' - " ) .  The mean square displacement (x') of a random walker in this system scales 
as (XZ)(2--a)/(l-")2 - (1 -p)- (2-") / ( ' -" ) f .  In the presence of a bias field we obtain (x)'/('-") - 
(1 - p ) - " ( I - n ) f .  We present an exact enumeration method to study diffusion on those 
systems; our numerical results confirm the above scaling relations. 

The problem of transport on random resistor-superconducting networks (de Gennes 
1980) has recently been studied extensively (Coniglio and Stanley 1984, Adler et a1 
1985, Bunde et a1 1985, Sahimi and Saddiqui 1985, Leyvraz et a1 1986). Several 
different models were presented by the above authors, including the short-circuit model 
for describing the transport properties of a random superconducting-resistor network. 
In the short-circuit model Monte Carlo results were not adequate to determine the 
exponents characterising the transport properties even in one dimension (Adler et a1 
1985). Very recently the problem of transport on a random distribution of conductors 
in a random resistor-isolator mixture was studied by Halperin et al (1985) and 
non-universal exponents were predicted which depend on the specific form of the 
conductor distribution. 

In this letter we study in one dimension the problem of a random resistor- 
superconductor mixture with a random distribution of resistor strength. We study this 
problem analytically by using scaling arguments similar to those presented by Halperin 
et a1 (1985) and by simulations using an exact enumeration method. The concentration 
of the superconductors is assumed to be p and each one is represented by a short 
circuit between the two resistors on both sides of the superconductor. The concentration 
of resistors is 1 - p  and their conductances have the following distribution: 

Po( U) - a<1,oscrs1. 

An example of a physical system for which a # 0 is as follows. Assume that all resistors 
are cylinders with the same length but with a constant distribution of diameters 0 d a s 1. 
Since U - a*, it follows that p ( a )  - d a / d o  - l/&, that is (Y = 4. 
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The average conductivity X of a system of size L ( L  is the total number of 
superconductors and resistors) can be calculated through 

where 1 is the number of resistors, 1 = L ( l  - p ) .  Note that the superconducting parts 
have (by definition) zero resistivity and therefore do not contribute to the total resistivity 
1 / Z  in (2). Using (1) we obtain for a > 0 

E-'= 1 - Po( a )  d a  - 1 d a  - 
Since amin - l - l / ( l - a )  (see e.g. Sen et a1 1985) we obtain 

(3) 

(4) z-I - p ( 1 - a )  

G = Z L -  L-"/(l-") (1 - p ) - l / ( l - a ) .  

and the specific conductivity becomes 

( 5 )  

In the thermodynamic limit, L + 00 and hence G + 0 for any a > 0. For constant Po( a ) ,  
i.e. a = 0, G scales as In L. For a < 0, the integrals in (3 )  do not depend on 1 and we 
recover the conventional result Z-' - L( 1 - p ) .  Hence the specific conductivity is 
independent of L and a. The diffusion constant D = (x2 ) /  t - L2/ t can be calculated 
through the Einstein relation D - G/( 1 - p )  which yields 

Therefore the mean square displacement (x') scales as 
( x 2 ) ( 2 - m ) / 2 ( l - a )  - ( 1  - p ) - ( 2 - a ) / ( l - a ) t  a>O ( 7 0 )  

( X 2 ) - ( l - p ) - 2 t  a CO. (76) 

Equation (7a) predicts, therefore, anomalous diffusion in one dimension with a 
diffusion exponent 

d ,  = (2 - a ) /  (1 - a )  a s o .  (8) 

The special case a = --CO (all resistors have the same conductivity a = 1 )  coincides with 
a recent theoretical result of Leyvraz et a1 (1986). The special case p = 0 reduces to 
the known result of Alexander et al (1981) for diffusion in a one-dimensional system 
with a distribution of transition rates. 

We have also studied the effect of a bias field on the diffusion. The time t for a 
random walker to travel along 1 resistor sites under the influence of the bias field is 
given by (see also Bunde et a1 1986) 

Using similar scaling arguments as in (2)-(4) we obtain for the mean displacement 
( x )  of the random walker 
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In the following we describe a numerical method for simulation of diffusion on 
the short-circuit one-dimensional model for random resistor-superconductor mixtures. 
First we have generated a random linear lattice of L sites by choosing superconducting 
sites with probability p and resistor sites with probability 1 - p .  The resistors are 
labelled progressively by i = 1,2, . . . , 1 and their coordinates in the chain are x (  i ) .  
Every resistor i carries a number m( i )  which counts the successive superconducting 
sites located between resistors i and i + 1. The actual difference in coordinates xjk 
between two arbitrary resistors j and k is obtained from 

k 

i = j  
xjk = x (  j )  - x ( k )  = sgn(j-  k) c [ m ( i ) +  11. 

We have chosen the transition rates W,,,,, between neighbouring resistors i and 
i + 1 according to 

w,,,,, = W,,,+, = $8;'(l-"' (12) 

where 8, is a random number between zero and one. By (12), the rate distribution 
P (  W) - W-" is generated, corresponding to (1 ) .  

For investigating the diffusion properties of the resistor-superconductor mixture 
we have applied the exact enumeration method (Ben-Avraham and Havlin 1982, Majid 
et a1 1984), which allows us to calculate exactly the distribution function P ( x ,  t )  of a 
random walker for a given lattice and a fixed starting point xo = x ( i o ) .  Here, the 
superconductors act as short circuits and therefore the walker can step only on resistor 
sites (Adler et a1 1985). We study the distribution function P ( x (  i )  - x (  i o ) ,  t ) .  At t = 0, 
P ( x ,  0) = by definition. At t = 1 ,  the walker steps with probability W,,,,, to the 
resistor site io+ 1 located at x ( i o + l )  and with probability Wb,,-, to the resistor site 
io -  1 located at x ( i o -  1 ) .  Hence 

W0.lO+l i W l o l o , - l  

for x = x (  io + 1 ) - xo 

for x = x (  io- 1) - x o .  
P ( x ,  1 )  = 1 - W,,,,,+, - Wlo,lo-l for x = 0 (13) 

For x f 0 and x Z x (  io * 1) - x o ,  P ( x ,  1 )  = 0. By iterating this procedure we find P ( x ,  2), 
etc. From P ( x ,  t )  we obtain the mean square displacement 

of the random walker with starting point at x ( i o )  for the considered configuration of 
resistors and superconductors. 

In order to obtain the corresponding configurational averaged quantities one has 
to average over many lattice configurations. For our actual computations averages 
over (typically) 500 lattice configurations have been performed and up to 3 x lo4 time 
steps have been considered. 

First we have studied the case when all resistors are identical, i.e. (Y = --CO. Figure 
1 shows our result for ( x 2 (  t ) ) (  1 - P ) ~  as a function of t for several values of p .  The 
observed data collapse clearly confirms ( 7 b ) .  Note that ( x 2 )  is linear in t for small 
times t = 1,2 ,3 ,  . . . , considered here. This normal random walk behaviour in d = 1 is 
in marked contrast to the results of Hong et a1 (1986) for higher-dimensional systems 
below the critical point. In d = 2, for random superconducting networks, there exist 
two different time regimes separated by a crossover time t , .  For t<c t , ,  ( r 2 ( t ) ) =  R:  
while for t >> tx ,  ( r 2 (  t ) )  - t ;  R, is the mean cluster radius. The crossover time is related 
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Figure 1. Plot of (x’)( 1 - p ) ’  against f for resistors with conductivity 1 (a = -a) for various 
concentrations p for superconductors: p = 0.9 (A),  p = 0.95 (U), p = 0.99 (O), p = 0.996 
(A), p = 0.999 (0). In the calculations the number of resistors was lo4, corresponding to 
a lattice size of lo7 for p = 0.999, and periodic boundary conditions have been employed. 

to the fractal nature of the unscreened perimeter sites of superconducting clusters. 
Since in d = 1 all perimeter sites are unscreened, one has (x’( t ) )  - t for all times 
considered. 

t 
a = 0.2 

10 
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Figure 2. Plot of (X~)~’’(I - p )  against r for different values of the distribution exponent 
a and various values of p: p = 0.7 (U), p = 0.8 (A), p = 0.9 (0). The number of resistors 
was 500 and periodic boundary conditions have been used. From the slopes of the curves 
in the large time regime Ids Is  3 x lo4 we obtain d,. 
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In figure 2 we have plotted, on a double logarithmic scale, (x*)’’~( 1 - p )  as a function 
of t for several values of a and p.  For a = 0.2, 0.4 and 0.6 we find d ,  = 2.30 It 0.05, 
2.70h 0.05 and 3.50It 0.05 respectively. These values are in excellent agreement with 
( 7 a )  and (8). 
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